网上投注站-赌场网上投注皇冠_百家乐刷钱_全讯网 全讯网评 (中国)·官方网站

首頁 > 講座預告 > 正文

講座預告

首頁 > 講座預告 > 正文

【韶風名家論壇】Convexity, Sparsity, Nullity and all that … in Machine Learning

發布時間 : 2017-03-28 00:00    點擊量:

分享:
報告時間
講座類型
報告題目:Convexity, Sparsity, Nullity and all that … in Machine Learning
主 講 人:Hamid Krim,北卡羅來州立大學教授,IEEE Fellow 
 
報告人簡介:
  Hamid Krim, 現任美國北卡羅來納州立大學電子與計算機工程系教授,研究興趣為統計信號和圖像分析、應用問題的數學建模。Krim教授曾擔任AT&T貝爾實驗室、麻省理工大學研究專家;曾獲貝爾實驗室杰出成績獎,美國國家科學基金會職業成就獎。目前,Krim是IEEE Transactions on Signal Processing的副主編IEEE Signal Processing Magazine的編委會成員,SPTM和Big Data Initiative的程序委會員會成員,2008年成為IEEE Fellow,被評為2015-2016年IEEE SP Society Distinguished Lecturer。
 
報告摘要:
  High dimensional data exhibit distinct properties compared to its low dimensional counterpart; this causes a common performance decrease and a formidable computational cost increase of traditional approaches. Novel methodologies are therefore needed to characterize data in high dimensional spaces.
  Considering the parsimonious degrees of freedom of high dimensional data compared to its dimensionality, we study the union-of-subspaces (UoS) model, as a generalization of thelinear subspace model. The UoS model preserves the simplicity of the linear subspace model, and enjoys the additional ability to address nonlinear data. We show a sufficient condition to use l1 minimization to reveal the underlying UoS structure, and further propose a bi-sparsity model (RoSure) as an effective algorithm, to recover the given data characterized by the UoS model from non-conforming errors/corruptions.
  As an interesting twist on the related problem of Dictionary Learning Problem, we discuss the sparse null space problem (SNS). Based on linear equality constraint, it first appeared in 1986 and hassince inspired results, such as sparse basis pursuit, we investigate its  relation to the analysis dictionary learning problem, and show that the SNS problem plays a central role, and may naturally be exploited  to solve dictionary learning problems.
  Substantiating examples are provided, and the application and performance of these approaches are demonstrated on a wide range of problems, such as face clustering and video segmentation.
 
主持人:歐陽建權教授,湘潭大學信息工程學院副院長
時 間:2017年3月30日下午2:00
地 點:工科樓北樓201
 
歡迎廣大師生參加!
 
湘潭大學信息工程學院
智能計算與信息處理教育部重點實驗室
2017年3月28日

關閉

友情鏈接:

地址:中國湖南湘潭  郵編:411105

版權所有?湘潭大學 (湘ICP備18021862號-2) 湘教QS3-200505-000059

湘公網安備 43030202001058號    

苹果百家乐官网的玩法技巧和规则 | 金殿百家乐官网的玩法技巧和规则 | 百家乐官网娱乐网官网网 | 大发888账号注册| 百家乐官网连线游戏下载| 电脑百家乐的玩法技巧和规则| 博彩百家乐画谜网| 大富豪百家乐| 二八杠口诀| k7百家乐最小投注| 百家乐特殊技巧| 宁河县| 百家乐赢钱公式冯耕| 外围赌球网站| 百家乐规| 百家乐官网桌游| 开百家乐骗人吗| 百家乐官网的赚钱原理| 百家乐路技巧| 澳门百家乐官网战法| 百家乐扑克多少张| 新营市| 澳门百家乐网址多少| 大发888开户,| 24山水口吉凶图| 名仕国际棋牌官方网| 百家乐官网赌场大全| 太阳城娱乐网88| 百家乐官网破解仪恒达| 威尼斯人娱乐城玩百家乐| 开心8百家乐官网娱乐城| 百家乐庄闲排| 阳宅24方位座向| 投真钱百家乐官网必输吗| 玩百家乐澳门皇宫娱乐城| 大发888官方df888gfxzylc8| 百家乐和抽水官网| 红宝石百家乐官网的玩法技巧和规则| 全讯网六| 太阳城百家乐赌博害人| 博E百百家乐官网娱乐城|